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Some Misconceptions in Derivative Pricing  

 

 

ABSTRACT 

 

 

This paper has used the Arbitrage Theorem (Gordan Theorem) to clarify some misconceptions in the 

literature of derivative pricing.  First, unlike the claim of the irrelevancy of the underlying asset’s (stock’s) 

expected return, it is found that the value of an option depends on the probability of the underlying asset 

(stock) rising or falling.  Using the relationship between the relative price ratio between the two states: 

)1/(    and the probability of the up move, the paper also derives discrete-time versions of the Greeks.  

Second, since with no arbitrage,   is a function of fr  and  , the Black-Scholes option pricing 

formula contains the underlying asset’s expected rate of return  .  Third, with a two-step contract, it 

has been shown that within a company, there is no first claim or seniority between bond and stock, but 

there is first claim among fixed-income assets (e.g., labor and bond), and labor is senior to bond.   
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1. Introduction   

 

The seminal work of Black and Scholes (1973) has inspired many researches on pricing and hedging 

different financial contracts.  The literature argues that when pricing options, the value of an option does 

not depend on the probability of the underlying asset (stock) rising or falling (e.g., Avellaneda and 

Laurence, 1999; Hull, 2012; Cox, Ross and Rubinstein, 1979; Kolb and Overdahl, 2007; Shreve, 2004a; 

Wilmott, 2007; among others).  Black and Scholes also claim that the Black-Scholes option pricing 

formula does not contain underlying asset’s expected rate of return  .  The corporate finance literature 

argues that within a company, bond is senior to stock (or bond has first claim over stock), and stock is 

more risky than bond.  I think these arguments are not correct.  In this paper, I use the Arbitrage 

Theorem to show that first, the value of an option depends on the probability of the stock rising or falling.  

Using the relationship between the relative price ratio between the two states: )1/(    and the 

probability of the up move, I also derive discrete-time versions of the Greeks.  Second, since with no 

arbitrage,   is a function of fr  and  , the Black-Scholes option pricing formula contains underlying 

asset’s expected rate of return  .  Third, with a two-step contract, it can be shown that there is no first 

claim or seniority between bond and stock, but there is first claim among fixed-income assets (e.g., labor 

and bond), and labor is senior to bond. 

The remainder of this paper is organized as follows.  Section 2 introduces the Arbitrage Theorem 

and uses the theorem and several examples to clarify some misconceptions in the literature.  Concluding 

remarks appear in Section 3.   

 

2. Arbitrage Theorem and Misconceptions in Derivative Pricing   

 

 Chang (2012) has introduced the Gordan Theorem (see also Bazaraa et al., 1993, p.47).  

 

Gordan Theorem (Arbitrage Theorem): 

Let A  be an nm  matrix.  Then, exactly one of the following systems has a solution: 

          System 1:  0Ax     for some nRx    



          System 2:  0pA t   for some mRp , 0p  , 1pe t  where 
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In System 2 of the Arbitrage Theorem, the vector p  (which is not the same as the probability 

measure in the real world) is usually termed as the risk neutral probability measure, and ip , mi  ..., ,1 , 

can be interpreted as the current price of one dollar received at the end of period if state i  occurs.  If 

System 2 holds and the matrix A  has rank m  (i.e., the matrix has m  independent rows), the risk 

neutral probability measure p  will be unique.1  If System 2 does not hold, as the following example 

shows, we can do arbitrage.  

 

Example 1. Arbitrage Example.   

Assume a one-period, two states (good time and bad time) of nature world with no transaction costs.  

There are a money market (Security 1) which provides 25.01  dollars at time one if one dollar is 

invested at time 0 (i.e., the risk-free interest rate is 25.0r ), and two other securities (Security 2 and 

Security 3) with current prices 4 and 48 dollars, respectively, which provide:  
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Note that the two securities are not governed by the same risk neutral probability measure (i.e., 

System 2 of the Arbitrage Theorem has no solution):   

                                                
1 m  independent rows of A  means a complete market.  See more discussions on incomplete and complete markets in 
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By System 1 of the Arbitrage Theorem, there must exist arbitrage opportunity.  For example, at time 0, 

we can short sell one share of Security 3 and buy 5 shares of Security 2 and invest 28 )5448(   

dollars in the money market, and at time 1 we can obtain net profit:  
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Hence, in equilibrium (with no arbitrage), the time-0 prices of Security 2 and Security 3 will change so 

that they can be priced by the same risk neutral probability measure, say, 
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In this example, 
1
3

1



  can be termed as the relative price ratio between the two states.  That is, 

at time 1, the value of one dollar of good time is three times than that of bad time.  We now use the 

                                                                                                                                                                    
Chang (2012).  



Arbitrage Theorem to clarify several misconceptions in the literature.   
 
2.1. We Do Not Use Probabilities in Pricing Options?   

 
Example 2. Binomial Option Pricing.  

Assume a one-period, two states (good time and bad time) of nature world with no transaction costs.  

There are a money market with risk-free interest rate 25.0r , an European call option C  with strike price 

60K  dollars, and a stock with current price 48 dollars, which provide:  
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At time 0, by buying n  shares of the underlying asset and selling one call to construct a portfolio 

which gives a certain time-1 payoff, the price of the European call is:2   
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and by System 2 of the Arbitrage Theorem:   

                                                
2  Chang (2012) has shown that in a complete market, all securities can be treated as a call option for each other.  For 

example, in equation (1), Security 2 can be written as a call option for Security 3, where the strike price is: 62K  if 
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It seems that the above option pricing formulas do not use probabilities.  The finance literature also 

makes the same claim: e.g., “the option pricing formula does not involve the probabilities of the stock 

price moving up or down.  For example, we get the same option price when the probability of an upward 

movement is 0.5 as we do when it is 0.9.” (Hull, 2012, p. 257); “we do not need to know the probability 

that the stock will rise or fall” (Cox et al., 1979, p. 232); “the probabilities of the up and down moves are 

irrelevant” (Shreve, 2004a, p.8); “the value of an option does not depend on the probability of the stock 

rising or falling.  This is equivalent to saying that the stock growth rate is irrelevant for option pricing” 

(Wilmott, 2007, p. 65); among others.   

I will argue that the claim of not using probabilities in valuing options is not correct.  For example, 

assume that in Example 2, dS0  drops from 30 dollars to 25'0 dS  dollars, and other factors (i.e., 

rSuK  and  , , 0 ) still remain the same: 

 

Example 3. Binomial Option Pricing with Lower 'd .   
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Note that although the European call option’s time-1 possible payoffs: 10]0 ,6070[  Maxfu  

and 0]0 ,6025[  Maxfd  are the same as in Example 2, the call option price increases from 6C  

to 
9
26' C .  This is because, when the up move u  and the interest rate r  remain the same, and the 

down move d  decreases, the current stock price will remain the same )48 ,i.e.( 0 S  only when 

investors (the market) believe the probability of the up move is higher than that in the previous case.3  

Once people believe that the up move of the underlying asset (the stock price) has higher probability, i.e., 

people believe 10]0 ,6070[  Maxfu  has higher probability, the call option price will increase.  Also, 

from System 2 of the Arbitrage Theorem:   
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The relative price ratio of (5) is 
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  of (3).  That 

is, the value of one dollar of good time is 3.5 times (not 3 times) than that of bad time.  Higher valuation 

for good time’s one dollar means that investors (the market) assign higher probability to good time.4  

With the relationship between   and the probability of the up move, we can derive the following 

discrete-time versions of the Greeks.   

 

                                                
3 Also, it is hard to believe that (in Example 2) if investors think that the probability of 70 dollars is 99% and the probability 
of 30 dollars is 1%, the current stock price could still be the same 48 dollars (i.e., it should be very close to 70 dollars).   
4 We may say that our expectations about the future will affect our current behavior (valuation).   



2.1.1 Discrete-Time Versions of the Greeks   
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We can also derive the "elasticity" of the call option price with respect to the stock price:  
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Thus, the call option is at least as volatile as the underlying asset (stock price).5  The elasticity of the call 

option price with respect to the stock price depends only on r  and d , and are independent of 

KuS  and , ,0 .  Also, the elasticity of the put option price with respect to the stock price is: 
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which depends only on r  and u , and will be less than 1  (i.e., the put option is more volatile than the 

stock) if )1(21 rur  ; equal to 1  (i.e., the put option has the same volatility as the stock) if 
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or less volatile than the call option price if investors believe that the probability of the up move of the stock price is larger, 
equal or smaller than that of the down move of the stock price.  See more discussions in Appendix.   
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(c)  Vega: Signs of 
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we can find that the range of the stock in (II) is larger than that in (I), and (II)’s call and put prices are 

lower.  The range of the stock in (III) is also larger than that in (I), but (III)’s call and put prices are 

higher.7 

                                                
7 Some may claim that “a rise in the variability of the stock will decrease its market value” (e.g., Ross, Westerfield and Jaffe, 

2010, p. 689).  However, this claim is not correct.  For example, in a complete market with: 



 

2.2. Black-Scholes Model Does Not Contain Stock’s Expected Rate of Return?   
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both Securities 3 and 4 are more volatile than Security 2, but their current market values could be more (48.2) or less (47.6) 

than Security 2’s market value (48).  Both Securities 5 and 6 are less volatile than Security 2, and their current market 

values could be more (48.4) or less (47.8) than Security 2’s market value (48).   
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where P  is the risk-neutral probability measure, fr  is the annual risk-free interest rate, and 10  T  

(e.g., for three months, 12/3T ).  With no arbitrage, (13) must be equal to (14), and hence,8   
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The payoff of the European call option with exercise price K  is:   

                                                
8 See also Ross (1993, p. 470).  
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 Equation (15) indicates that with no arbitrage,   is a function of fr  and   although the 

Black-Scholes formula (19) doesn’t show  .  This result refutes the claims in the literature that “the 

expected return on the stock does not appear in equation … The option value as a function of the stock 

price is independent of the expected return on the stock” (Black and Scholes, 1973, p. 644); “The option 

price does not depend on the expected return on the common stock” (Merton, 1990, p. 282); among 

others.   

 

2.3. Bondholder Has ‘First Claim’ Over Stockholder?   

 

 The corporate finance literature claims that within a company, bond is senior to stock (or bond has 

first claim over stock), e.g., “stockholders do receive more earnings per dollar invested, but they also bear 

more risk, because they have given lenders first claim on the firm’s assets and operating income” (Myers, 

1984, p.94).  The following example shows, however, that the claim of bond’s being senior to stock is 

not correct.  

 

Example 4. Seniority Between Bond and Stock?   

Assume a one-period, two states (good time and bad time) of nature world with no transaction costs.  

There are a money market (Security 1) with risk-free interest rate 25.0r , and two other securities, 

Security 2 and Security 3, where Security 3 is a portfolio of two shares of stock of a totally 

equity-financed firm:   
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Suppose that the firm (Security 3) changes Stock 2 into a bond (i.e., the firm has 50% debt):   
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We can think that there is a “two-step contract” (rather than “seniority”) between the stockholder and 

the bondholder: First, split the firm’s income equally between the stockholder and bondholder; and second, 

if the bondholder’s 50% share is more than 187.5 dollars (the upper bound), she will give out any 

additional money to the stockholder; and if the bondholder’s 50% share is less than 187.5 dollars, the 

stockholder will use her 50% share to compensate the bondholder until the stockholder’s share becomes 

zero, or the bondholder gets 187.5 dollars.  Also, comparing (20) with (21), we can find that stock and 

bond are like two parties in a forward contract, i.e., at time-1, the bondholder (with a short position) will 

sell a stock to the stockholder (with a long position) at the price 187.5 dollars, and the stockholder will 

obtain the stock which at time-1 may be worth 250 dollars or nothing.  That is, the bondholder is willing 

to sacrifice the chance of obtaining more than 187.5 dollar at the good time (i.e., 437.5/2 of (20) > 187.5 



of (21)) in order to avoid the possibility of obtaining less than 187.5 dollar at the bad time (i.e., 187.5/2 of 

(20) < 187.5 of (21)).  The stockholder, on the other hand, is willing to take the chance (the risk) of 

getting less at the bad time (i.e., 0 of (21) < 187.5/2 of (20)) to gain the opportunity of obtaining more at 

the good time (i.e., 250 of (21) > 437.5/2 of (20)).9   

Note that if bond has first claim over stock, bond should be less risky than stock.  But, because 

bond’s payment has an upper bound, bondholder will still get the same upper bound payment when things 

become much better and will obtain less when things become much worse.  For example, in (21) if the 

future payment of Security 3 (the firm) becomes more volatile than expected (e.g., 600 dollars at the good 

time and 100 dollars at the bad time):   
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the bondholder still gets the same 187.5 dollars at the good time but obtains much less (i.e., 100 < 187.5) 

at the bad time, and hence, the bond’s current market value drops from 150 to 132.5 dollars.  The 

stockholder, on the other hand, benefits (i.e., the stock’s current market value increases from 150 to 247.5 

dollars).  This example shows that bond is more risky than stock.  It also casts doubt on Knight’s claim 

that within a company, “the confident and venturesome ‘assume the risk’ or ‘insure’ the doubtful and timid 

by guaranteeing to the latter a specified income in return for …power to direct his work” (p. 269).10   

 

Example 5. Seniority Among Fixed-Income Assets.   

                                                
9 Just like in the forward contract case where no party will compensate another party for bearing any kind of risk, 
bondholder will not compensate stockholder for so called first claim or seniority.   
10 Some practitioners also question the notion of bond’s first claim and safety, e.g., “it is not the obligation that creates the 
safety, nor is it the legal remedies of the bondholder in the event of default.  Safety depends upon and is measured entirely 
by the ability of the debtor corporation to meet its obligations” (Graham and Dodd, 1988, p. 113).   



Assume a one-period, two states (good time and bad time) of nature world with no transaction costs.  

There are a money market (Security 1) with risk-free interest rate 25.0r , and two other securities, 

Security 2 and Security 3 (firm), where Security 3 (firm) is a portfolio of a stock and two fixed-income 

assets: a labor and a bond,   
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It usually says that de jure, labor is senior to bond, and bond is senior to stock.  But consider a 

two-step contract between the stock and the portfolio of labor and bond: First, split the firm’s income 

between the stock (
360
100%

9
727  ) and the portfolio of labor and bond (

360
20060%

9
272 

 ); and second, 

if the labor and bond portfolio’s %
9
272  share is more than the upper bound: )

6
527075(

6
5325  dollars, 

the labor and bond portfolio will give out any additional money to the stockholder; and if the labor and 

bond portfolio’s %
9
272  share is less than 

6
5325  dollars, the stockholder will use her %

9
727  share to 

compensate until the stockholder’s share becomes zero, or the labor and bond portfolio gets 
6
5325  

dollars.  That is, there is no seniority or first claim between the stock and the portfolio of labor and the 

bond.  However, since the two fixed-income assets’ (labor’s and the bond’s) payments have upper bounds, 

when the bond and the labor split their income, the bondholder will have a less chance to obtain the upper 



bound payment 
6
5270  dollars (i.e., labor is senior to bond and bond is more risky than labor).  From 

this example, we can conclude that within a company, there is no first claim or seniority between 

fixed-income assets (labor and bond) and non-fixed-income asset (stock), but there is first claim among 

fixed-income assets and labor is senior to bond.   

 

3. Concluding Remarks 

 

 This paper has used the Arbitrage Theorem (Gordan Theorem) to clarify some misconceptions 

in the literature of derivative pricing.  First, unlike the claim of the irrelevancy of the underlying asset’s 

(stock’s) expected return, it is found that the value of an option depends on the probability of the 

underlying asset (stock) rising or falling.  Using the relationship between the relative price ratio between 

the two states: )1/(    and the probability of the up move, the paper also derives discrete-time 

versions of the Greeks.  Second, since with no arbitrage,   is a function of fr  and  , the 

Black-Scholes option pricing formula contains underlying asset’s expected rate of return  .  Third, with 

a two-step contract, it has been shown that there is no first claim or seniority between bond and stock, but 

there is first claim among fixed-income assets (e.g., labor and bond), and labor is senior to bond.   

 

 

 



 Appendix 

 

Assume a one-period, two states (good time and bad time) of nature world with no transaction costs.  

There are a money market with risk-free interest rate 25.0r  and three securities with current market 

prices 48, 80 and 50 dollars, respectively:   
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Note that C  can be a call option for Security 2 (where 60K ), Security 3 (where 3/320K ), 

or Security 4 (where 65K ).  Also, P  can be a put option for Security 2 (where 60K ), Security 

3 (where 80K ), or Security 4 (where 55K ).  This result refutes Cox, Ross and Rubinstein’s (1979) 

claim that “the only random variable on which the call value depends is the stock itself.  In particular, it 

does not depend on the random prices of other securities or portfolios” (p. 235).   

 Suppose that ,4 ,3 ,2 ,0 iS i  increase, and other factors (i.e., ruSuSdSdSK  and ,'' ,'' , 00  ) 

remain constant.  This means that the probability of good time increases (and 
4
3

  becomes 
16
13' ):   
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The elasticity of the call option price with respect to the stock price is:   
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the elasticity of the put option price with respect to the stock price is: 
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